Does Artificial Intelligence help us to avoid process & human errors

Share This Post

Share on facebook
Share on linkedin
Share on twitter
Share on email

Artificial Intelligence (AI) the ability of a computer program or machine to thinkand learn, automate & imitate intelligent human behavior is poised to transformthe trust in process instruments and eliminate the human and process errors as weknow it. But it is a complementary technology, designed to enhance the performanceof instruments and humans (managers, consultants, engineers and technicians) indoing their jobs.

Currently, the Energy Industry is trailing other industries in the acceptance and applications of AI. But many experts predict it will be one of the industries most disrupted by AI in the coming decade, thanks to the widespread adoption of electronic real-time remote maintenance of instruments, remote automatic error detection, less human interaction in the field and the huge amounts of data at our disposal.

With AI as an instrument inside our energy plant IT portfolio, we will have the opportunity to save a lot of maintenance cost, reduce the number of human & process errors, improve the data of the flow measurement in terms of quality/quantities and overall process safety. Indeed, the possibilities are endless.

Predictive models

Currently, our team is using AI to find the hidden pearls of wisdom buried inside massive streams of data. At the same time, we are striving to create a new, hybrid rolewhat we call instrument data scientists and/or Subject Matter Expert (SME) who understands machine learning, AI and how these technologies can be applied to the energy industry and research centers. Our goal with AI is to improve the overall safety & efficiency, reduce the number of human & process errors and maintenance costs.



Results, to date, have been extremely promising. Our scientists /engineers are building AI into our AML software platform not only to predict certain instrument and human behavior but to lead directly to actions to avoid human errors such as to improve the process safety, measured quality and quantities of the delivered products.

For instance, we have been able to identify (at high rates of accuracy & precision) instruments at high risk of failure (Fail to danger or fail to safe), which enables Managers, engineers and technicians to take proactive steps to treat them in ways that mitigate further risk and lead to safer operations

In another project, we have developed a prediction model which indicated when the quality and/or quantity of the flow measurement is going outside their contractual/uncertainty limits. With this prediction model we:

  • Avoid low/high delivery production or environment penalties
  • Avoid bad product quality
  • Avoid production loss or give always
  • Execute real-time remote automatic maintenance of the instruments
  • Avoid human interaction (errors)

We can determine, with high degrees of accuracy, precision and confidence level (1, 2 or 3 sigma), an upcoming instrument failure, maintenance activity, quality or quantity flow measurement delivering risk of mortality, as well as the risk of human interaction.

By understanding the likelihood of an instrument prognosis, we will be able to develop a maintenance plan that is more appropriate for the purpose of the instrument and remote automatic maintenance. That means fewer instances of maintenance, less human interactions in the field and better advise to managers, consultants, engineers and technicians which become more personalized (every individual needs other AI data).

Moving to implementation

But AI in the Energy Industry has it challenges, too, given the level of complexity and nuance in this field. Also, given a lack of regulatory and standards like: IIoT devices and their security, infrastructure design, real-time instrument data quality, data flows, diagnostics, plant reference data, etc. are we going to use block chain for sharing quality data in the network?


In AI research to date, the field can produce inconsistent or flawed studies that could lead to improper or irresponsible implementation of the findings. The questions here is where are we going to implement AI? on all levels of the ISA 95 model? or should we skip some levels (instrument, control, plant, asset, enterprise or corporate) and what AI should come out of those different levels? We know from experience that AI make centralized systems far more efficient than defused systems, because machine learning works better the more information it can be analyze. Are we going to use centralized systems also on instrument level?

AI is not a panacea. Thats why, in my view, youll never see machine engineers, because the human factors of creativity, common sense and instinct so often play a critical role in decision-making. What were doing with AI, in essence, is striving to better harness data to gain critical additional insights that could lead to improved efficiency and outcomes. Our work is progressing, but for us to truly move this effort forward we must get more Instrument data scientists and/or SMEs engaged and we have to train them in how to better understand these algorithmic models and what the results mean for stakeholders, plant owners in terms of risks, human behavior and investments.

As we move forward, we are implementing Artificial Intelligence and are eager to move beyond academic research and generate practical outcomes that can be more broadly reviewed, assessed and adopted as common industry practices.

Our goal is to improve the plant safety & efficiency and reduce human & process errors and maintenance cost. We can do so much better for our clients but it starts all with a proper design of a secured infrastructure: without the infrastructure we are not able to get the real-time process & diagnostic data and falling back of entering data manually in spreadsheets or databases which increase the risk of process and human errors.

The opportunities are there but this biggest challenge we have is not implementing the technology or changing the workflows, but how can we change the behavior of humans. Most of the Humans doesnt like to change, they like to operate in their own comfort zone. Why should we change? we are working already for years like this, what is the purpose, etc.

Most of the existing plants (Brownfields) do not have a proper infrastructure in place. We are buying for decades smart instruments, but nobody is using the intelligent data from these instruments. We are only looking to the data validity and not to other parameters like data integrity, consistency, redundancy.

The Challenge for existing plants is to implement a hybrid solution. Next to the traditional 4-20 mA signals which are going to the process control system, we can implement a traditional infrastructure with fiber optic cables, or we can choose for smart (wireless) IIoT devices to existing instruments. The plant owners will then be able to retrieve the real-time diagnostic and/or process data from those instruments via a separate network to the plant network against lower cost than traditional digging and pulling cables.

Other alternative could be retrieving the Hart (digital) data which is available in the auxiliary cabinets and is not used in most of the cases. Convert this real-time data into digital standards like OPC-UA or others. From the OPC server, it will be easy to read the data and made these available for use in applications on different levels of the ISA 95 standard. The Open Group is working hard on a new O-PAS (Open Process Automation Standard) standard for inter-operability and cyber security.

For new plants is would be much easier based on this new O-PAS standard to retrieve real-time diagnostic and process data from smart instruments and converts this to the OPC-UA standard. During the conceptual design phase, we should be able to design a proper infrastructure against lower cost with better cyber security.

Artificial Intelligence (AI) will not only reduce labor but will create also new jobs, other skillsets and job descriptions. For those new jobs we need data scientist and subject matter experts who can interpret the data and translate these into analytics and machine learning.

I like to encourage you all to contact me and to discuss the business opportunities

Wolter Last

Subscribe To Our Newsletter

Get updates and learn from the best

More To Explore